Skip to main content

Towards Asymptotically Optimal One-to-One PDP Algorithms for Capacity 2+ Vehicles

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2018)

Abstract

We consider the one-to-one Pickup and Delivery Problem (PDP) in Euclidean Space with arbitrary dimension d, where n transportation requests are picked i.i.d. with a separate origin-destination pair for each object to be moved. First, we consider the problem from the customer perspective, where the objective is to compute a plan for transporting the objects such that the Euclidean distance traveled by the vehicles when carrying objects is minimized. We develop a polynomial time asymptotically optimal algorithm for vehicles with capacity \(o(\root 2d \of {n})\) for this case including the realistic setting where the capacity of the vehicles is a fixed constant and \(d=2\). This result also holds imposing LIFO constraints for loading and unloading objects. Secondly, we extend our algorithm to the classical single-vehicle PDP, where the objective is to minimize the total distance traveled by the vehicle and we present results indicating that the extended algorithm is asymptotically optimal for a fixed vehicle capacity, if the origins and destinations are picked i.i.d. using the same distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The o(n) result follows from (2) and the unnumbered equation in the proof of Theorem 4.5 in [15].

References

  1. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998). https://doi.org/10.1145/290179.290180

    Article  MathSciNet  MATH  Google Scholar 

  2. Beardwood, J., Halton, J.H., Hammersley, J.M.: The shortest path through many points. Math. Proc. Camb. Philosoph. Soc. 55(4), 299–327 (1959). https://doi.org/10.1017/S0305004100034095

    Article  MathSciNet  MATH  Google Scholar 

  3. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and delivery problems: a classification scheme and survey. TOP: Off. J. Span. Soc. Stat. Oper. Res. 15(1), 1–31 (2007)

    Article  MathSciNet  Google Scholar 

  4. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report 388, Graduate School of Industrial Administration, Carnegie Mellon University (1976)

    Google Scholar 

  5. Das, A., Mathieu, C.: A quasipolynomial time approximation scheme for Euclidean capacitated vehicle routing. Algorithmica 73(1), 115–142 (2015)

    Article  MathSciNet  Google Scholar 

  6. Few, L.: The shortest path and the shortest road through n points. Mathematika 2(2), 141–144 (1955). https://doi.org/10.1112/S0025579300000784

    Article  MathSciNet  MATH  Google Scholar 

  7. Guan, D.: Routing a vehicle of capacity greater than one. Disc. Appl. Math. 81(1), 41–57 (1998). https://doi.org/10.1016/S0166-218X(97)00074-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated routing problems. Math. Oper. Res. 10(4), 527–542 (1985)

    Article  MathSciNet  Google Scholar 

  9. Khachay, M., Dubinin, R.: PTAS for the euclidean capacitated vehicle routing problem in \(R^d\). In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 193–205. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_16

    Chapter  Google Scholar 

  10. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems (part I). J. Betriebswirtschaft 58(1), 21–51 (2008)

    Article  Google Scholar 

  11. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems (part II). J. Betriebswirtschaft 58(2), 81–117 (2008)

    Article  Google Scholar 

  12. Psaraftis, H.: Analysis of an o(n) heuristic for the single vehicle many-to-many Euclidean dial-a-ride problem. Transp. Res. Part B: Methodol. 17, 133–145 (1981)

    Article  Google Scholar 

  13. Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Transp. Sci. 29, 17–29 (1995)

    Article  Google Scholar 

  14. Stein, D.M.: An asymptotic, probabilistic analysis of a routing problem. Math. Oper. Res. 3(2), 89–101 (1978). https://doi.org/10.1287/moor.3.2.89

    Article  MathSciNet  MATH  Google Scholar 

  15. Treleaven, K., Pavone, M., Frazzoli, E.: Asymptotically optimal algorithms for one-to-one pickup and delivery problems with applications to transportation systems. IEEE Trans. Autom. Control 58(9), 2261–2276 (2013). https://doi.org/10.1109/TAC.2013.2259993

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andersen, L.N., Olsen, M. (2018). Towards Asymptotically Optimal One-to-One PDP Algorithms for Capacity 2+ Vehicles. In: Cerulli, R., Raiconi, A., Voß, S. (eds) Computational Logistics. ICCL 2018. Lecture Notes in Computer Science(), vol 11184. Springer, Cham. https://doi.org/10.1007/978-3-030-00898-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00898-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00897-0

  • Online ISBN: 978-3-030-00898-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics